
EXPOSED
RULE-BASED REFERENCES

GETING STARTED
SUMMARY
EXPOSED helps you to easily and automatically map object references for your components. You
can set rules for creating these references which are completely reusable also for other
components. Everything is configurable in Inspector and you can see the results of the rules
settings and references immediately. It will help you to dramatically reduce repeatable reference
drag&dropping or reference selecting. It will also help you to visualize reference settings if you
prefer writing it directly in code and to get rid of initialization performance overhead.

There’s no need of coding when setting the rules, you can always use basic predefined rules. But if
you need to define extra conditions for obtaining references for scene objects, you can write your
own rules and connect them through Exposed API. Or you can use query, which is most flexible
and realtime (query feature coming soon, more on this in Query section).

Plugin is entirely written in C#, all source code files are included.

BASICS

Let’s assume that you have GameObject in the scene with component you need to setup. This
component has multiple references to it’s sub-objects or even references outside of it’s scope to
somewhere else in the scene. Standard procedure would be to drag&drop or select these
references or set them dynamically by implementing them, but here we will use special EXPOSED
component and benefit from all of it’s great features.

The process begins simply by adding ExposedReferences script component to gameObject with
your component. At this moment, you can see just the list of components on this gameObject on it.
For being able to set the rules for automatic reference settings, you have to create Exposed
configuration asset first.

It can be done through Unity main menu (Assets/Create/Exposed/Configuration), or with help of
context menu directly in Project View (Create/Exposed/Configuration). Then you are able to set
reference to this configuration file in ExposedReferences component settings in Inspector. After
having set this configuration asset, you are able to define rules for setting references of your
component. You can use this configuration file anywhere you want, most probably you will use it for
same component types, but you can even use it for different components if the variable names are
the same.

SETTING RULES
For each reference variable, you can set whether
the rules should be applied to it or not. When it’s
enabled, setting of references is completely
managed by rules and you won’t be able to
change them by hand (through drag&drop or
selection). You can disable the rules anytime and
take back the control of creating them.

You can set rules for variables which refers to
single object (Component or GameObject), or
arrays (Component[] or GameObject[]) or even

lists (List<Component> or List<GameObject>).
These variables have to be serializable (basically all variables you see in Inspector, more on this
topic in Unity documentation).

For enabled rules, you will set the type of rule:
• Core - predefined rules (more to come in future updates)
• Custom - your own implemented rules (more on this in Advanced part of this manual)
• Query - …coming soon… (more on this in Query part of this section)

Then you are able to choose what rule will be exactly applied. From predefined rules, you can
choose from rules searching in children gameObjects, parent gameObjects, on the same

http://docs.unity3d.com/Manual/script-Serialization.html

gameObject, with specific tag or specific type, etc. (More about Core Rules in it’s own section.)Now
you’re done and you can immediately see the results of application of these rules in your
component’s references fields. But how about performance, aren’t these kind of searches quite
expensive in terms of performance?

INITIALIZATION
Application of rules in editor happens instantly. In running application, it could be big performance
problem, so these references are initialized for each gameObject with them just before the game
in editor is switched to playmode. It works automatically. The same principle applies also for

platform builds (installations for Windows, Mac, iOS, Android, etc.). References are set
automatically during scene post processing.

From performance point of view, in final build, the initialization of scenes is faster, because you
don’t have to execute this kind of search in Awake() method (l ike for using
GetComponentsInChildren function). And you are always sure, that you are caching these kind of
references and not using them for example in Update function every frame.

But sometimes you might need to turn this mechanism off and initialize references in Awake()
method as you would do when implementing code by hand. For this purpose, you can disable
PreInitialization on ExposedConfigurationManager asset. Sometimes it might be useful for
example in Editor for faster playmode loading, because there’s some extra overhead of searching
for ExposedReferences component when PreInitialization is enabled. For platform builds,
preferably leave PreInitialization enabled for achieving better performance.

Initialization of these kinds of references can be achieved only for GameObjects in scenes, but
how about prefabs? Even for them the references can be set automatically, when they’re
instantiated, or you can manually run ExposedReferences.UpdateReferences() method, which
will update references according to the rules at that precise moment you want.

PREFABS
For prefabs, there’s no way how to
ensure references by rules in advance,
before the prefab is instantiated in
scene. Their references are therefore
updated in Awake() method. But
sometimes, it might be useful to update
references later in Start() method.
M o s t l y b e c a u s e o f c h a n g i n g
instant ia ted prefab ’s parent in
h ie ra rchy, a f t e r i t i s c rea ted .
Initialization in Awake() would be
performed too early before reparenting.
It’s possible to use Late References
Update checkbox to eliminate this
early update and use Start() method
instead.

Sometimes you might need to update references for prefab at the exact time, without relying on
late references update described above. You can always update references manually by calling
UpdateReferences() method on ExposedReferences component. This can be also useful for
updating references on GameObject you are adding newly instantiated prefab to (as a child). Then
by updating references manually, you get recent reference array (or list) of references. Or you can
simply use List for storing references and then add the newly created instance to this list by
List.Add().

CORE RULES
Exposed plugin comes with a set of predefined rules (more to come with future updates). Every
rule can have more settings for filtering output results. Type of searched component is determined

directly from the type of variable. You can also search just for GameObject, not for specific
component.

• GameObject - searching for components on same GameObject (useful also for native Unity
components like Rigidbody, Animator, or even ExposedReferences script component itself,
when updating references on demand)

• Children - searching for components or GameObjects in children
• nonactive included - nonactive objects in hierarchy are included in search
• self included - components on this GameObject are included in search

• Parents - searching for components or GameObjects in parents
• nonactive included - nonactive objects in hierarchy are included in search
• self included - components on this GameObject are included in search

• Tag - searching for components or GameObjects with specified tag in scene
• Tag - Unity tag
• Filter by gameObject’s name - filter results by the name of current gameObject (current

filter is then shown in Used filter label below)

• Object Of Type - searching for components or GameObjects of specified type in scene
• Filter by name - name of GameObject
• Add gameObject name as prefix - ads current object’s name to filter (current filter is

then shown in Used filter label below)

QUERY (coming soon)
Possibility of defining own rules without programming custom rules, just by specifying string search
expression. Connecting different search results together and filtering them through wide range of
rules.

ADVANCED TOPICS
CUSTOM RULES
Adding new, custom rule, can be done by creating new C# class in scripts assembly, which
implements PropertyProcessor class. To have this class included in the whole build process and
to be shown in appropriate enum, it’s name has to end with CustomPropertyProcessor (like
MyDefinedCustomPropertyProcessor).

The methods of IPropertyProcessor interface are responsible for identifying rules globally
(GetUniqueId()), showing appropriate label in enum (GetActionTypeLabel()), processing search for
components or gameObjects of single or array type(ProcessSingleGameObjectField(),
ProcessSingleComponentField(), ProcessArrayGameObjectField(),
ProcessArrayComponentField()) and rendering some additional GUI elements
(RenderAdditionalGui()).

By adding additional GUI elements, it’s possible to define more filtering rules of search result.
These settings are saved and serialized through ExposedPropertyConfiguration class. This whole
method has to be surrounded by #if UNITY_EDITOR … #endif directives. It’s necessary for
platform builds, because it uses UnityEditor library, which isn’t available for them (you shouldn’t
also include using UnityEditor, anywhere in the file without directives surroundings).

DEFAULT CONFIG SETTING FOR SCRIPT
In some cases it’s appropriate to set predefined config file for component of certain type. It can be
done by adding variable of ExposedConfiguration type to this component’s properties. In

default setting for script, you can then specify this configuration asset, which will be automatically
used when ExposedReferences script is added to gameObject with this user-defined component.

